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PREFACE 

California’s Climate Change Assessments provide a scientific foundation for understanding 

climate-related vulnerability at the local scale and informing resilience actions. These 

Assessments contribute to the advancement of science-based policies, plans, and programs to 

promote effective climate leadership in California. In 2006, California released its First Climate 

Change Assessment, which shed light on the impacts of climate change on specific sectors in 

California and was instrumental in supporting the passage of the landmark legislation 

Assembly Bill 32 (Núñez, Chapter 488, Statutes of 2006), California’s Global Warming Solutions 

Act. The Second Assessment concluded that adaptation is a crucial complement to reducing 

greenhouse gas emissions (2009), given that some changes to the climate are ongoing and 

inevitable, motivating and informing California’s first Climate Adaptation Strategy released the 

same year. In 2012, California’s Third Climate Change Assessment made substantial progress in 

projecting local impacts of climate change, investigating consequences to human and natural 

systems, and exploring barriers to adaptation.  

Under the leadership of Governor Edmund G. Brown, Jr., a trio of state agencies jointly 

managed and supported California’s Fourth Climate Change Assessment: California’s Natural 

Resources Agency (CNRA), the Governor’s Office of Planning and Research (OPR), and the 

California Energy Commission (Energy Commission). The Climate Action Team Research 

Working Group, through which more than 20 state agencies coordinate climate-related 

research, served as the steering committee, providing input for a multisector call for proposals, 

participating in selection of research teams, and offering technical guidance throughout the 

process. 

California’s Fourth Climate Change Assessment (Fourth Assessment) advances actionable 

science that serves the growing needs of state and local-level decision-makers from a variety of 

sectors. It includes research to develop rigorous, comprehensive climate change scenarios at a 

scale suitable for illuminating regional vulnerabilities and localized adaptation strategies in 

California; datasets and tools that improve integration of observed and projected knowledge 

about climate change into decision-making; and recommendations and information to directly 

inform vulnerability assessments and adaptation strategies for California’s energy sector, water 

resources and management, oceans and coasts, forests, wildfires, agriculture, biodiversity and 

habitat, and public health.  

The Fourth Assessment includes 44 technical reports to advance the scientific foundation for 

understanding climate-related risks and resilience options, nine regional reports plus an oceans 

and coast report to outline climate risks and adaptation options, reports on tribal and 

indigenous issues as well as climate justice, and a comprehensive statewide summary report. 

All research contributing to the Fourth Assessment was peer-reviewed to ensure scientific rigor 

and relevance to practitioners and stakeholders.  
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For the full suite of Fourth Assessment research products, please visit climateassessment.ca.gov. 

This report uses big data to clarify how climate change is expected to affect residential 

electricity and natural gas consumption at the zip code level. 
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ABSTRACT 

This paper proposes a simple two-step estimation method (Climate Adaptive Response 

Estimation - CARE) to estimate sectoral climate damage functions, which account for long- run 

adaptation. The paper applies this method in the context of residential electricity and natural 

gas demand for the world's sixth largest economy - California. The advantage of the proposed 

method is that it only requires detailed information on intensive margin behavior, yet does not 

require explicit knowledge of the extensive margin response (e.g., technology adoption). Using 

almost two billion energy bills, we estimate spatially highly disaggregated intensive margin 

temperature response functions using daily variation in weather. In a second step, we explain 

variation in the slopes of the dose response functions across space as a function of summer 

climate. Using 18 state-of-the-art climate models, we simulate future demand by letting 

households vary consumption along the intensive and extensive margins. We show that failing 

to account for extensive margin adjustment in electricity demand leads to a significant 

underestimate of the future impacts on electricity consumption. We further show that 

reductions in natural gas demand more than offset any climate-driven increases in electricity 

consumption in this context. 

 

Keywords: Climate Change, Electricity Demand, Natural Gas Demand, Heating, Cooling 
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HIGHLIGHTS 

• Data representing almost two billion residential energy bills were used to estimate 

projected annual changes in electricity and natural gas demand at the zip code level 

through 2100 for California’s major Investor Owned Utilities (IOUs). These projections 

internalize climate-related changes in both use and adoption of air conditioning as well 

as heating practices, holding current population distribution and energy technologies 

constant. 

• Accounting for expected increases in adoption of air conditioning in areas that 

historically have not used air conditioners substantially increases the projected change 

in annual electricity demand above what would be expected based on increased use of 

air conditioning in zip codes where it is already prevalent. 

• Residential natural gas consumption is expected to decline significantly, with the 

aggregate residential end-use energy consumption projected to decline. However, this 

analysis does not investigate whether primary energy use would fall. (Primary energy 

use accounts for the difference between energy used to generate, transmit, and distribute 

electricity and the energy of electricity consumed, the energy needed to produce 

electricity in power plants.) 
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1: Introduction 

The Intergovernmental Panel on Climate Change (IPCC) projects that the average global surface 

temperature will rise by between 1 and 3.7 °C (1.8 - 6.7 °F) by the end of the century. This shift 

in the mean of the global surface temperature distribution will be accompanied by significant 

increases in the frequency and intensity of extreme heat events (IPCC AR5, 2013). Humans 

respond to hot outdoor ambient temperatures by cooling the indoor environment at home 

and/or at work. If the frequency and intensity of hot days increases due to climate change, one 

would expect this to cause increased cooling and decreased heating demand. One of the three 

Integrated Assessment Models used in the calculation of the federal Social Cost of Carbon 

concludes that increased space cooling is the major driver of Global Climate Damages (Rose et 

al, 2014). This finding relies on an assumed temperature responsiveness of a simple space 

cooling function in the FUND Integrated Assessment model, which has little to no empirical 

basis (Anthoff and Tol, 2014). 

Air conditioning is the main option for adaptation to hotter temperatures and it has been shown 

to be an effective strategy to mitigate the negative health impacts of hot days. In the United 

States, the mortality effect of a very hot day decreased by roughly 80% between 1900-1959 and 

1960-2004 due to the increased penetration of air conditioners (Barreca et al., 2016). This 

observed trajectory of air conditioner installation has been driven by growth in incomes and 

falling prices of both AC units and the electricity required to operate them (Biddle, 2008). A 

changing climate represents a new driver of air conditioner adoption. If San Francisco with its 

pleasant coastal climate gets Fresno's hot climate by end of century, even cool San Franciscans 

will install window units in existing apartments and new construction will be built with central 

air conditioning. The cost of this adaptation mechanism comes in the form of both installation 

and operating costs, while the benefits accrue in the form of better health and increased 

comfort. 

There is a dearth of causal estimates of empirically calibrated damage functions to quantify the 

short- and long-run relationship of higher temperatures and electricity consumption from space 

cooling (Auffhammer and Mansur, 2014). This paper attempts to partially fill this gap. It also 

makes a significant step forward in the estimation of credible long-run climate impacts, which 

has been the main challenge in the literature estimating climate change impacts across sectors 

(e.g., agriculture, health, labor productivity, crime) and spatial scales (Dell et al., 2014, Carleton 

and Hsiang, 2016). It does so by using a combination of short-run weather variation in a panel 

context and long-run climate variation in a cross-sectional context. The proposed method is 

applicable beyond climate impact dose response functions. It could be applied in any setting 

where the short-run and long-run response of agents differs (e.g., responses to exogenous 

changes in air and water pollution, pricing, and income). 

In both the short and long run, the main adaptation response to the higher incidence of extreme 

heat days will be the more frequent operation of existing air conditioning equipment, which we 

will refer to as the intensive margin adjustment for the remainder of the paper. The long-run 
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response will be the climate change driven installation of air conditioners in areas that currently 

see little penetration of this equipment. We will refer to this dimension of adaptation as the 

extensive margin adjustment. While there are a number of papers attempting to quantify the 

intensive margin adjustment for a number of sectors (e.g., agriculture, mortality, crime), it is 

extremely difficult to carry out a full empirical characterization of the additional extensive 

margin response at fine enough levels of aggregation to be useful to planners. In the case of 

electricity, this is due to the lack of data on installed air conditioners over time and space in the 

United States.1 

The main innovation of this paper is that we lay out a simple method to estimate both the 

intensive and extensive margin impacts of climate change on consumption when one does not 

have data on installed capital (e.g., air conditioners). In a first step, using household-level billing 

data, we estimate the causal temperature response function of household electricity 

consumption at a fine level of spatial aggregation - the five-digit ZIP code level. These response 

functions allow us to examine how the intensive margin adjustment (“increased usage of 

existing equipment”) varies across 1,165 ZIP codes in California in our sample. 

A warmer climate has benefits as well. California’s residential consumers consume the majority 

of their natural gas during the winter time to heat their homes. Milder winters will require less 

heating and hence decrease natural gas consumption. We use our household level billing data 

for natural gas to estimate a weather response of natural gas consumption for each ZIP code. 

Estimation at this fine level of aggregation is made possible by the fact that we observe almost 2 

billion electricity and natural gas bills, which represent 79 percent of California’s households 

over a decade. 

In a second step, we use regression to explain cross-sectional variation in these “first-step” 

estimated slopes of each ZIP code’s temperature response function as a function of long-run 

average weather (“climate”) and other confounders varying across ZIP codes. The estimated 

marginal effect of climate on the slope of the short-run response function allows us to capture 

extensive margin adjustments to long-run changes in climate. We then use downscaled climate 

projections from 18 of the IPCC’s most recent climate models to simulate future household 

electricity consumption at the ZIP code level under climate change, taking into account both 

intensive (“first-step”) and extensive margin (“second-step”) adjustments. We then compare the 

projected increases in electricity consumption to climate-driven reductions in natural gas 

consumption, which we estimate and project separately. We show that, in the case of 

California’s residential sector, the natural gas savings are greater than the increases in electricity 

consumption in end consumption BTU terms. 

                                                      

1 Davis and Gertler (2015) is the only example for a large country (Mexico) which utilizes data both on 

appliance holdings and electricity consumption for a large share of the population. 
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The main advantage of the approach proposed here is that it does not require data on where air 

conditioners are installed. While there are a few surveys that record such data in the US (e.g., 

RASS, RECS), the spatial coverage is limited and the exact location of the household is masked 

for privacy reasons. Our approach circumvents this data limitation, which would be very costly 

to overcome, by relying on observed electricity consumption from billing data and weather 

only. The approach outlined here can be (and is starting to be) adopted for other sectors as well 

(e.g., health, agriculture). 

 

2: Literature Review 

The literature quantifying the economic impacts of climate change has experienced explosive 

growth over the past decade. Review articles by Carleton and Hsiang (2016), Hsiang (2016), and 

Dell et al. (2014) provide up-to-date and comprehensive surveys of both methods and 

applications. The key challenge that still has not been adequately overcome is to estimate 

externally valid dose response functions between economic outcomes of interest (e.g., energy 

consumption, crop yields, mortality, water consumption, labor productivity, cognitive ability) 

and a long (e.g., 30 year) average of weather, which is commonly referred to as climate. This 

estimated long-run response is supposed to capture both adaptive behavior at the intensive 

margin (e.g., increased operation of existing air conditioners) and the extensive margin (e.g., 

installation of additional air conditioners). The coefficients parameterizing said dose response 

function should be estimated in a way that allows a causal interpretation. This is anything but 

straightforward. Below I provide a brief summary of the methodological approaches in existing 

papers, while listing examples with an energy focus. 

The earliest literature relied on large-scale bottom-up structural simulation models to estimate 

future electricity demand under varying climate scenarios. The advantage of these models is 

that they can simulate the effects of climate change given a wide variety of technological and 

policy responses. The drawback is that they contain a large number of assumed response 

coefficients and make ad hoc assumptions about the evolution of the capital stock; there is little 

empirical guidance for either approach. The early papers in this literature suggest that climate 

change will significantly increase energy consumption (Cline, 1992; Linder et al., 1987, Baxter 

and Calandri, 1992; Rosenthal et al., 1995). 

The recent literature has focused on providing empirical estimates of climate response functions 

for a large number of sectors. There are four empirical approaches using distinctly different 

sources of variation to parameterize climate response functions: (1) Time Series Regression (2) 

Ricardian Approach (3) Panel Estimation (4) Long Differences. Each of these approaches has 

distinct advantages and disadvantages. 

A simple and commonly practiced approach employed to quantify the impact of climate on 

electricity consumption uses high frequency (e.g., daily or hourly) time series of electricity load 
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and regresses these on population-weighted functions of weather. Franco and Sanstad (2008) 

use hourly electricity load for the entire California grid operator over the course of the year 2004 

and regress them on average daily population-weighted temperature. They identify a highly 

nonlinear response of load to temperature. They show projected increases in electricity 

consumption and peak load of 0.9 to 20.3 percent and 1.0 to 19.3 percent, respectively. Crowley 

and Joutz (2003) use a similar approach for the Pennsylvania, [New] Jersey, Maryland Power 

Pool Interconnection. Auffhammer et al. (2017) estimate the response of peak load and average 

load to daily weather for 166 load-balancing authorities, covering the vast majority of the US 

electricity load. They show modest increases in consumption by the end of this century, yet 

significant increases in the intensity of annual peak load (15-21%) and a twelve- to fifteen-fold 

increase in the frequency of peak events by the end of century. The drawback of this approach is 

that it relies on short-term fluctuations in weather and hence does not estimate a long-run 

climate response but rather a short-run weather response. It simply cannot account for 

adaptation responses to climate change such as increased use and installation of air conditioners 

or increased incidence of demand-side management and energy efficiency programs. 

The second strand of the literature is based upon the seminal work by Mendelsohn et al. (1994), 

who estimated the impact of climate change on agricultural yields by regressing yields or net 

profits on climate. This cross-sectional approach has the advantage that it estimates a true 

climate response. The method has been widely criticized, as any non-experimental cross-

sectional regression is bound to suffer from omitted variables bias (e.g., Deschenes and 

Greenstone, 2007). Any unobserved factor correlated with climate and the outcome of interest 

will bias the coefficients on the climate variable. This approach has not been widely applied in 

the energy literature, yet Mansur et al. (2008) is one example of a cross-sectional approach, 

which endogenizes fuel choice, something that is usually assumed to be exogenous and 

provides one avenue of adaptation. 

The third strand of the literature relies on panel data of energy consumption at the household, 

county, state or country level to estimate a dose response function. Deschenes and Greenstone 

(2011) were the first to use the panel approach to quantify the impacts of climate change on 

residential electricity demand. They study variation in residential energy consumption at the 

state level, using flexible functional forms of daily average temperatures. Their identifying 

assumption, which is credible, is that weather fluctuations are random conditional on a set of 

spatial and time fixed effects. As in the time series papers cited above, the authors find a U-

shaped response function. They find that the impact of climate change on annual residential 

energy consumption for the Pacific Census Region (California, Oregon, and Washington) by 

2099 is approximately nine percent - yet not statistically different from zero. Aroonruengsawat 

and Auffhammer (2012) use a panel of household-level electricity billing data to examine the 

impact of climate change on residential electricity consumption. They use within-household 

variation in temperature, which is made possible through variation in start dates and lengths of 

household billing periods. They can control for household fixed effects, month fixed effects, and 

year fixed effects. Their projected impacts are consistent with the findings by Deschenes and 
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Greenstone (2011), ranging between 1%and 6%. The panel approach has the advantage that one 

can control for often extensive sets of fixed effects, which deal with the omitted variables issues 

from which the Ricardian model suffers. This comes at a cost. The estimated response is again a 

short-run weather response, not a long-run climate response, which fails to incorporate 

extensive margin adaptation. Further, the inclusion of large suites of fixed effects may amplify 

measurement error issues (Fisher et al., 2012). 

A fourth approach, which due to data limitations has not yet been applied in the energy sector, 

is long difference estimation. Burke and Emerick (2016) take long differences (e.g., 10 or 20 

years) of economic outcomes of interest (e.g., agricultural yields) and regress these on long 

differences of weather. This approach differences out unit-level unobservable cross-sectional 

differences. The advantage of this method is that it estimates a long-run climate response and is 

robust to the omitted variables issues raised in the Ricardian context. The data requirements are 

significant, as this approach requires a panel long enough to generate a difference in weather, 

which is long enough to be interpreted as climate. 

In summary, the time series and panel approaches only capture intensive margin changes and 

are sensitive to time-varying confounders correlated with temperature. The Ricardian approach 

is sensitive to the confounding impact of unobservable factors correlated with the climate 

variables. The panel approach only estimates a short-run response. The long difference 

estimation approach is the most robust to the possible effect of confounding factors, yet the time 

series data requirements are significant. Finally, none of these approaches can separate the 

intensive and extensive margin effects empirically. 

Davis and Gertler (2015) provide the only paper which combines a formal estimation of the 

extensive margin adoption decision with a more traditional panel data based intensive margin 

response function. They take advantage of a large database on household air conditioner 

ownership and electricity consumption for a large, rapidly developing country - Mexico. They 

characterize the temperature response on the intensive margin using electricity bills and 

observed temperature. To characterize their extensive margin impacts, they rely on a large 

cross-sectional survey of appliance ownership across households. They regress air conditioner 

ownership on contemporaneous Cooling Degree Days, not climate, which makes this a short-

run extensive margin response. They link the two models to simulate impacts of growing 

income and warming weather on intensive and extensive margin consumption of electricity. 

They find significant impacts: For the worst case climate scenario and continued income 

growth, they estimate a 15.4% increase in electricity consumption by end of century. Once they 

account for the extensive margin adjustment, the impacts grow to an 83.1% increase in 

consumption. The problem is that data on technology penetration and the outcome of interest 

(e.g., air conditioners and electricity consumption) do not exist for most developing or 

developed countries, which requires a different approach when one observes usage data only. 

In this paper, we propose a simple method which endogenizes the shape of the temperature 

response function in the long run without ever observing the level and type of technology 
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adopted by a household. This approach, CARE, uses fixed effects estimation to obtain causal 

estimates of the short-run (intensive margin) temperature response for a large number of 

relatively fine spatial aggregates (ZIP codes) with differing degrees of AC penetration. In a 

second regression, we estimate the sensitivity of the estimated slopes in the short-run 

temperature response across space as a function of long-run climate, which endogenizes the 

extensive margin response. The simulation then uses Global Climate Model (GCM) output to 

simulate the intensive margin impacts by moving along a given response function, as well as 

the extensive margin impacts by shifting the response function itself as climate changes. There 

is a literature which has shifted response functions in the long run (e.g., Bigano et al., 2006; 

Auffhammer and Aroonruengsawat, 2012b; Barreca et al., 2016; Dell, Jones, and Olken, 2012, 

2014; Hsiang and Narita, 2012; Butler et al. 2013; Heutel et al. 2017). We build on the general 

insight of a climate-dependent response function and formalize an empirical approach to do so 

when one observes a large number of micro-level observations on outcomes. The application 

here is the perfect setting as we observe a large number of electricity bills across a significant 

amount of time (allowing for the inclusion of household fixed effects) and space (allowing for 

the cross-sectional variation in climate required for the second-step estimation). This approach 

allows any utility to estimate the business as usual impacts of climate change on consumption 

without having to engage in the costly collection of appliance stock and efficiency data. 

 

3: Data 

3.1 Residential Billing Data 

As part of a confidential data sharing agreement with California’s investor owned utilities 

(IOUs), we have obtained an extensive history of bills for all households serviced by the four 

IOUs in the state: Pacific Gas and Electric (PG&E), Southern California Edison (SCE), Southern 

California Gas Company (SoCalGas), and San Diego Gas and Electric (SDG&E). SDG&E and 

PG&E are gas and electric utilities, while SoCalGas only provides gas and SCE only provides 

electricity. Table (1) provides an overview of the temporal data coverage for the four utilities by 

energy source (electricity and natural gas). 

Table 1: Electricity and Natural Gas Bills by Utility 

 
Notes: This table displays the total number of bills in our dataset. We drop electricity bills with average daily consumption less 
than 2kWh as well as solar homes. Further, the estimated models only include ZIP codes for which we have more than 1,000 
bills. 
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The dataset contains the complete bill-level consumption and expenditure information for the 

population of single metered residential customers during the years for which we have data, as 

outlined in Table (1). Specifically, we observe an ID number for the physical location (e.g., 

residence), a service account number (e.g., customer), bill start date, bill end date, total 

electricity or natural gas consumption (in kilowatt-hours, kWh, or therms for gas), and the total 

amount of the bill (in $) for each billing cycle, as well as the five-digit ZIP code of the premise 

metered. Only customers who were individually metered are included in the dataset, hence we 

cannot say anything about multi-unit buildings with a shared meter. We also cannot reliably 

identify households who have moved and therefore refrain from using this as a source of 

econometric identification. For the purpose of this paper, a customer is defined as a unique 

combination of premise and service account number. We also can identify whether a customer 

receives a low-income subsidy on electricity pricing through a state program. Further, we can 

determine which homes are all-electric, meaning that they heat and cool using electricity and 

have their own electric water heaters. This is not mostly by the homeowners’ choice, but is 

simply due to the fact that not all of California has natural gas infrastructure to serve residences. 

It is important to note that each billing cycle does not follow the calendar month, as the 

beginning date and the length of the billing cycle vary across households, with the vast majority 

of households being billed on a 25-35 day cycle. We remove bills with average daily 

consumption less than 2 kWh from our sample, because we are concerned that these outliers are 

not regular residential homes, but rather vacant vacation homes. We also remove homes on 

solar tariffs from our data, since we do not observe total consumption from these homes, but 

only what they take from the grid, rendering these data useless for the purpose of this exercise. 

Hereafter, this dataset is referred to as “billing data.” 

For electricity, we observe a total of 964 million bills; for gas we have 928 million bills. We 

observe 658 million electric bills for “normal” households, which are neither on the subsidized 

tariff nor all-electric homes. In addition, we have 92 million bills for all-electric homes in the 

PG&E and SCE territories. The remaining bills are for households on the subsidized tariff in all 

four utility territories. We will treat these three classes of households separately in terms of 

estimation and simulation. It is important to note that we cannot match the electricity and gas 

data beyond the ZIP code level because we do not observe a customer’s address and the 

account numbers were anonymized by the utility. 

There is significant variation in bill-level consumption across and within households. Because 

across-household variation may be driven by unobservable characteristics at the household 

level (e.g., income, physical building characteristics, and installed capital), we will control for 

unobservable confounders at the household level using fixed effects, and we will use bill-to-bill 

within-household variation at the household level as our source of identifying variation. To 

proceed with estimation at the ZIP code level, we identify all ZIP codes across the four utilities’ 

territories for which we have at least 1,000 bills. Our data cover 1,165 ZIP codes for which we 
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observe such billing data.2 The ZIP codes for which we have data represent approximately 80 

percent of California’s population. 

 

 
 
 
Notes: The maps above display the five-digit ZIP codes for which we have more than 500 bills over the estimation period 
from either PG&E, SCE, SCG or SDG&E. Zip codes with no data either have fewer than 500 bills total or are served by one of 
California’s many municipal utilities. Panel (a) displays coverage for our electricity data. Panel (b) displays coverage for our 
natural gas data 
. 

Figure A1: Spatial Data Coverage by Utility for Electricity and Natural Gas 

 

                                                      

2 See Figure A1 for a map of the spatial coverage of the electricity and gas data. 
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3.2 Weather Data 

The daily weather observations to be matched with household consumption data have been 

provided by the PRISM (2004) project at Oregon State University. This dataset contains daily 

gridded maximum and minimum temperature for the continental United States at a grid cell 

resolution of roughly 2.5 miles. We observe these daily data for California from 1980-2015. In 

order to match the weather grids to ZIP codes, we have obtained a GIS layer of ZIP codes from 

ESRI, which is based on the US Postal Service delivery routes for 2013. For small ZIP codes not 

identified by the shape file, we have purchased the location of these ZIP codes from a private 

vendor (zip-codes.com). We matched the PRISM grids to the ZIP code shapes from the census 

and averaged the daily temperature data across the multiple grids within each ZIP code for 

each day. For ZIP codes identified as a point, we simply use the daily weather observation in 

the grid at that point. This leaves us with a complete daily record of minimum and maximum 

temperature as well as precipitation at the ZIP code level from 1980 to 2015. 

3.3 Other Data 

Unfortunately, we only observe bill details about each household and are missing any 

sociodemographic observables. We do, however, observe the five-digit ZIP code in which each 

household is located. We purchased sociodemographics at the ZIP code level from a firm 

aggregating this information from census estimates (zip-codes.com). We observe these data 

only for a single year (2016). 

Table 2: Summary Statistics for ZIP Codes In and Out of Sample 

 
Notes: This table displays the mean observable characteristics of the ZIP codes in our sample and ZIP codes not in our 
sample with positive population. The t-test assumes unequal variances. The observable characteristics were purchased from 
zip-codes.com. 
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There are 1,640 five-digit ZIP codes in California that have non-zero population. Our sample of 

ZIP codes with more than 1,000 bills contains households for 1,165 of these. We do not have 

sufficient data for households in the remaining 475 ZIP codes. These remaining ZIP codes either 

are not served by the three utilities, or we do not have a sufficient number of bills for them. 

Table (2) shows summary statistics for both the ZIP codes in our sample and the ZIP codes for 

which we do not have billing data. The ZIP codes in our sample represent 80 percent of 

California’s population. The ZIP codes in our sample are more populated, younger, richer, have 

more expensive homes, have slightly more persons per household, and have a lower proportion 

of Caucasians and a higher proportion of Hispanics and Asians. There is a small but statistically 

significant difference in summer and winter temperature, with the in-sample ZIP codes being 

slightly warmer. This is not surprising since most of the ZIP codes we are missing are in the 

northern part of the state and the mountainous Sierras. The big difference in elevation confirms 

this. Taking these differences into consideration is important when judging the external validity 

of our estimation and simulation results. 

We will not make explicit use of this information in our first-step regression, but will control for 

the observable sources of variation in our cross-sectional second step, which by design does not 

allow for a fixed effects strategy. The variables we will use in the second stage are income, 

population density, and summer climate. 
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4: Econometric Estimation Strategy 

4.1 Intensive Margin: The usage Response to Temperature 

 

 
Notes: This figure displays the temperature response of electricity consumption in three fictional ZIP codes with differing 
climates - moderate, warm and hot. The bars at the bottom display the temperature (weather) distribution for the three ZIP 
codes. The colors of the response functions match the colors of the weather distribution(s). The figure displays that the hot 
ZIP code has a steeper temperature response at higher temperatures than the warm and moderate ZIP codes. The first step 
in the estimation identifies the ZIP code specific temperature response curves using household level data. The second 
estimation step estimates the effect of climate (average time spent in a portion of the temperature spectrum) on the 
slope of the response curves across ZIP codes for the air conditioning relevant portion of the temperature spectrum. 

Figure 1: Conceptual Identification of Short and Long Run Response 

 

Figure (1) visualizes our econometric estimation strategy. The figure displays stylized current 

intensive margin dose response functions between weather and electricity consumption for a 

moderate, a warm and a hot ZIP code. The horizontal axis displays the proportion of days 

annual temperature falls into discrete temperature bins. The moderate ZIP codes have more 

days in the 15-24 degree bin and fewer days in the 105-114 degree bin. Using billing data for a 

group of households in the moderate ZIP codes, one can econometrically recover an estimate of 

its response function by regressing billed consumption on the temperature controls, other 

observed confounders, and a suite of fixed effects. For each bin, one estimates a ZIP code-

specific slope of the temperature response curve. One can do this for each ZIP code and recover 

a set of slope coefficients across the observed temperature spectrum for each ZIP code. One 
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would expect that the slope of the temperature response in the warm ZIP codes for the bin 95-

104 degrees would be steeper than the slope of the cold ZIP codes, yet flatter than the slope of 

the hot ZIP codes, as AC penetration is thought to be increasing with temperature. The second 

estimation step takes these β estimates for each bin and ZIP code in the upper portion of the 

temperature spectrum and regresses their cross section on long-run historical averages of 

observed temperature (climate). The estimated second-step coefficients can then be used to 

change the slope of each ZIP code’s response curve as future climate changes. 

Equation (1) below shows our main estimating equation, which is a simple log-linear equation 

estimated separately for each of the 1,165 ZIP codes indexed by j. This estimating equation has 

been commonly employed in climate change impacts estimation (e.g., Deschenes and 

Greenstone 2011, Davis and Gertler, 2015). 

 

   (1) 

 

where log  is the natural logarithm of household i’s daily average electricity (natural gas) 

consumed in kilowatt-hours (therms) during billing period t.  are our binned measures of 

temperature, which we discuss in detail below.  are observed confounders at the household 

level,  are time-invariant household fixed effects,  are month of year fixed effects, and  

are year fixed effects.  is a stochastic error term. Because bills do not overlap perfectly with 

calendar months and years,  and  are assigned as shares to individual bills according to 

the share of days in a bill for each month and year. 

For estimation purposes, our unit of observation  is a unique combination of premise and 

service account number, which is associated with a household and structure. We thereby 

avoided the issue of having individuals moving to different structures with more or less 

efficient electricity consuming capital, or residents with different preferences over electricity 

consumption moving in and out of a given structure. 

California’s housing stock varies greatly in its energy efficiency and installed energy-consuming 

capital. Further, California’s population is not randomly distributed across ZIP codes. We 

suspect that there may be differences in preferences for cooling, installed capital, quality of 

construction, and the associated demographics and capital across ZIP codes. The key novelty in 

this paper is that we causally estimate Equation (1) separately for each of the 1,165 ZIP codes in 

our data. The motivation for doing this is that we would expect the relationship between 

consumption and temperature to vary across these ZIP codes according to the penetration of air 

conditioners and the resident population’s propensity to use these. One could of course 

estimate a pooled regression with interaction terms to limit the number of estimated 

coefficients. This is simply a weighted average of our disaggregated results. Because one of the 
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main points of this paper is to account for the heterogeneity of impacts, we impose as little 

structure as possible, by estimating Equation (1) at the ZIP code level instead of pooling. 

The main variables of interest in this paper are those measuring temperature. Following recent 

trends in the literature, we include our temperature variables in a way that imposes a minimal 

number of functional form restrictions, in order to capture potentially important nonlinearities 

of the outcome of interest - electricity consumption - in weather (e.g., Schlenker and Roberts 

2006, 2009; Deschenes and Greenstone 2011, Davis and Gertler, 2015). We achieve this by sorting 

each day’s mean temperature experienced by household  into one of 14 temperature bins. For 

the purposes of this study, we use the same set of bins for each ZIP code in the state. In order to 

define a set of temperature bins, we split the state’s temperature distribution into a set of 

percentiles and use those to sort days into the bins. As a result, not all ZIP codes will have 

observations in each bin. The northern ZIP codes, for example, do not experience days in the 

hotter bins, while the southwestern parts of California have few or no days in the coldest bins. 

We split the temperature distribution into deciles, and break down the upper and bottom 

deciles further to include buckets for the first, fifth, ninety-fifth, and ninety-ninth percentiles, to 

account for extremely cold/hot days. We therefore have a set of 14 buckets which we use for 

each household, independent of the climate zone in which the household is located. The cutoffs 

for the bins are 24, 35, 40, 46, 51, 55, 59, 63, 67, 72, 78, 83 and 92 degrees Fahrenheit mean daily 

temperature. For each household and bill, we count the number of days the mean daily 

temperature falls into each bin and record this as . The main coefficients of interest are the 

fourteen  coefficients, which measure the impact of one more day with a mean temperature 

falling into bin p on the log of household daily electricity consumption in ZIP code . For small 

values, ’s interpretation is approximately the percent increase in daily average household 

electricity/natural gas consumption during a billing period, associated with experiencing one 

additional day in that temperature bin. 
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Figure 2: California's Summer (June-August) and Winter (December-February) Climate: Average 

Daily Temperature 1981-2015 

Panel (a) in Figure (2) displays the daily average temperature for the months of June, July and 

August, averaged over the years 1981-2015. This is a reasonable measure of summer climate (a 

25 year average instead of the usual 30 year average). Figure (2) shows that the Central Valley 

non-coastal areas of Southern California are very warm during the summer months. We would 

expect these areas to have a significantly more temperature-sensitive electricity consumption 

response than the cooler coastal areas of Northern California and higher altitude settings in the 

Sierras. Panel (b) displays the winter months (December, January, February) average daily 

temperature. The spatial distribution is similar to that of the summer climate. This figure simply 

stresses that, due to its size and geography, California possesses significant heterogeneity in 

climate, which is necessary for our two-step approach to work. 
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 is a vector of observable confounding variables, which vary across billing periods and 

households. There are two major confounders that we observe at the household level. The first 

is the average electricity price for each household for a given billing period. California utilities 

price residential electricity on a block rate structure. The average price experienced by each 

household in a given period is therefore not exogenous, because marginal price depends on 

consumption ( ). 

Identifying the price elasticity of demand in this setting is problematic (e.g., Hanemann 1984; 

Reiss and White 2005; Ito, 2014). We are not interested in estimating it, because it is simply 

impossible to write a better paper than Ito (2014), who uses the same electricity data we employ 

here. 

However, the block rate pricing structure introduces an issue that has consequences for the later 

simulation. Higher temperatures in a given month will lead to higher electricity consumption. 

Block rate prices will force a share of households onto a higher pricing tier and raise average 

price, as is discussed in detail in Ito (2014). By design, this induces a positive conditional 

correlation between price and consumption. If we were to include price in Equation (1) as part 

of , we later would have to explicitly model the impact of higher temperatures on average 

price in a simulation framework, which would require us to make assumptions about a future 

pricing regime. An alternate approach would be to omit average price from Equation (1) and let 

the temperature coefficient capture both temperature channels. We opt for the latter strategy, 

because predicting climate change-driven changes in the block rate pricing schedule to the end 

of the century is not something any economist should do. In the absence of major technological 

change, which we discuss in the conclusion, one would expect retail prices to rise, pushing our 

modest impact estimates further toward zero. 

The second major time-varying confounder is precipitation in the form of rainfall. We control 

for rainfall using a second-order polynomial in all regressions. A third confounder, which we 

do not observe, is humidity. Humidity is not a major issue in California, as most parts of the 

state are semi-arid. Our temperature coefficients hence capture the effects of humidity. Our 

simulations would become invalid if the correlation patterns between humidity and 

temperature in the future were projected to become different from the historical correlations, for 

which we could find no evidence in the literature. 

To credibly identify the effects of temperature on the log of electricity consumption, we require 

that the residuals conditional on all right-hand side variables be orthogonal to the temperature 

variables, which can be expressed as . Because we control for 

household fixed effects, identification comes from within-household variation in daily 

temperature after controlling for confounders common to all households and for rainfall. We 

estimate Equation (1) separately for electricity and natural gas for each of the 1,165 ZIP codes in 

our sample, using a least-squares fitting criterion and a household-level clustered variance 

covariance matrix. This approach is the first estimation step in our overall methodology and 

serves as the basis for our estimates of intensive margin adjustment due to climate change. We 
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must make the assumption that the within-household response to slowly changing climate over 

this relatively short sample period is small, in order to be able to interpret our coefficients as the 

intensive margin adjustment to the changes in usage of existing equipment in response to 

changing temperature; we think this is reasonable. 

4.2 Extensive Margin: The Long-Run Response to Temperature 

In a warmer world, existing air conditioners will be run for more hours, which we call the 

intensive margin adjustment. The second margin of adaptation is the installation of additional 

air conditioners in existing homes and new construction. One can easily imagine that if San 

Francisco’s future climate resembles that of current Fresno during the summer, the wealthy and 

no longer cool residents of San Francisco will install (additional) cooling equipment in their 

homes. To be clear, we are interested in the climate change-driven response, not an income- or 

price-driven response. We attempt to quantify the magnitude of this response. We estimate 

equations of the following form: 

 

    (2) 

 

where  is a measure of ZIP code ’s temperature responsiveness in bin  [10; 14] as 

estimated in Equation (1). We would expect there to be a response only in the upper portion of 

the temperature response curve, where cooling occurs, which is why we limit the estimation of 

Equation (2) to bins 10-14. A common threshold for the uptick in the temperature response 

curve, which we will show is valid for our data, is 65 degrees Fahrenheit, which is also a 

commonly used base temperature for calculating cooling degree days (CDD). 

The variable  in Equation (2) is the share of days that ZIP code  experienced in temperature 

bin  during the sample years 1981-2000 from our ZIP code-level weather data produced from 

the PRISM data.  is bounded by 0 and 1 and adds to one when summed across all 

temperature bins from 1-14. The variable(s)  are any confounders that may affect the 

temperature response of the population in ZIP code . One confounder we consider here is 

income, as higher-income households can more easily afford the capital expenditure of an air 

conditioner and its associated operating expense (Rapson 2011). We also include population 

density to proxy for the level of urbanization. While we will not use the estimated coefficients 

on income and population density in our simulation later, controlling for them ensures that we 

do not confound the temperature extensive margin adjustment by income. If individuals sort 

into climate according to income, failing to control for these factors would bias our estimated 

climate response. One could, of course, use the second-step estimates on income and population 

to simulate overall demand in a more populated, richer world. 

In terms of estimation, we could estimate five separate equations of type (2) or estimate a 

pooled regression allowing for flexibility in the  coefficient for higher bins. We chose to 
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estimate a pooled model, which restricts the coefficients on income and population density to be 

identical for all bins, yet controls for bin dummies. This provided more stable estimation results 

than estimating separate equations. The bin dummies control for the fact that each bin contains 

the response coefficients for a different collection of ZIP codes. This arises, as we mentioned 

above, because we do not have temperature coverage in all bins for all ZIP codes. Finally, we 

estimate Equation (2) via Ordinary Least Squares with heteroskedasticity robust standard 

errors, as the dependent variables are estimated coefficients and do not have constant variance. 

Running weighted least squares does not significantly change the results, yet the least squares 

estimates are more stable. 

 

5: Estimation Results 

5.1 Intensive Margin: The Usage Response to Temperature 

As discussed in the previous section, we estimate Equation (1) for each of the 1,165 ZIP codes 

that have more than 1,000 bills. While we cannot feasibly present all of the estimated 

temperature response functions (which are comprised of up to 13 parameter estimates each), we 

can display the distribution of the temperature response curves in a fan plot, which is shown in 

Figure (3).3  

                                                      

3 For some ZIP codes the coverage in the extreme temperature bins is very small. After visual inspection 

of all response curves we have dropped coefficients in only the extreme temperature bins with insufficient 

data coverage for simulation purposes. 
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Notes: This figure displays the empirical distribution of the estimated electricity temperature response function across ZIP 
codes in the sample across percentile temperature bins. The lightest grey shading indicates the range of the 5th to 95th 
percentile. Each darker shading represents a 5% increase in the percentile. The solid black line represents the median 
temperature responsiveness. The vertical grey lines indicate the cutoffs of the temperature bins. 

Figure 3: Distribution of Estimated Electricity Temperature Response Coefficients across ZIP 
Codes 

 

The thick black line displays the median temperature response curve across the 1,165 ZIP codes. 

As the regression has average daily consumption on the left-hand side and the number of days 

out of a normalized 30 spent in each bin on the right-hand side, the coefficients indicate the 

percent change in average daily consumption from one additional day spent in a given bin 

relative to a day in the 65 degree bin. The curve has the expected U-shape with a steep positive 

slope above 65 degrees and a shallower negative slope at temperatures below 65 degrees. The 

trough of the U-shaped response curve is right near the omitted bin of 65 degrees. Figure (3) 

displays the significant heterogeneity in temperature response via the shaded fan areas. The 

palest grey fan indicates the bounds of the 5th to 95th percentile of the distribution. Each darker 

shade of grey increments the interval by 10%. What we see here is a significant number of ZIP 

codes with an extremely steep temperature response, as well as a significant number of ZIP 

codes with an almost flat temperature response. The bottom panel displays the temperature 

response when including average price in the regressions. As hypothesized, the response 
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function flattens out significantly after controlling for price, which is consistent with the forced 

positive correlation between average price and consumption.4 

 

 
 
 
Notes: This figure displays the empirical distribution of the estimated electricity temperature response function across ZIP 
codes in the sample across percentile temperature bins. The lightest grey shading indicates the range of the 5th to 95th 
percentile. Each darker shading represents a 5% increase in the percentile. The solid black line represents the median 
temperature responsiveness. The vertical grey lines indicate the cutoffs of the temperature bins. This figure is estimated for 
the subset of households receiving a 20% discount on their utility pricing due to their low income status.  

Figure A2: Distribution of Estimated Electricity Temperature Response Coefficients across ZIP 
Codes for Subsidized Households 

 

                                                      

4 Figure (A2) produces analogous pictures for the subsidized households and Figure (A3) for the all-

electric households. The subsidized household distribution has a slightly shallower slope at both high 

and low temperatures. The all-electric distribution has slightly steeper slopes at higher and lower 

temperatures, which is to be expected because these houses tend to be older, with heating and cooling 

systems that use electricity, not natural gas. 
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Notes: This figure displays the empirical distribution of the estimated electricity temperature response function across ZIP 
codes in the sample across percentile temperature bins. The lightest grey shading indicates the range of the 5th to 95th 
percentile. Each darker shading represents a 5% increase in the percentile. The solid black line represents the median 
temperature responsiveness. The vertical grey lines indicate the cutoffs of the temperature bins. This figure is estimated for 
the subset of households identified as all–electric by the utilities. 

Figure A3: Distribution of Estimated Electricity Temperature Response Coefficients across ZIP 
Codes for All-Electric Households 
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Notes: This figure displays the empirical distribution of the estimated electricity temperature response function across ZIP 
codes in the sample across percentile temperature bins. The lightest grey shading indicates the range of the 5th to 95th 
percentile. Each darker shading represents a 5% increase in the percentile. The solid black line represents the median 
temperature responsiveness. The vertical grey lines indicate the cutoffs of the temperature bins. 

Figure 4: Distribution of Estimated Natural Gas Temperature Response Coefficients across ZIP 

Codes 

 

Figure (4) displays the analogous results for the natural gas regressions, also excluding price 

from the regressions. Because space heating is the only major ambient temperature-sensitive use 

of natural gas in residences, we would expect a downward sloping line in temperature at low 

temperatures and a relatively flat response curve at higher temperatures. Figure (4) 

impressively displays exactly that. There is quite a bit of variation in slope across ZIP codes, yet 

the median response is exactly as expected and flattens out at almost exactly 65 degrees 

Fahrenheit. 

5.2 Extensive Margin: The Long-Run Electricity Consumption 
Response to Temperature 

As discussed in Section 4.2, we exploit the 1,165 estimated electricity temperature response 

curves and examine whether we can explain variation in temperature response at high 

temperatures through cross-sectional variation in “climate” as well as income and population 

density. 
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Table 3: Second Stage Regressions of Temperature Response Coefficients by Temperature Bin 

 
Notes: This table displays coefficients from a regression of the electricity slope coefficients estimated in equation (1) on the share of 
days in a given temperature bin the ZIP code has experienced over the period 1981-2000. The regression only includes the air 
conditioning relevant temperature bins 10-14. The standard errors are Huber-White. Regressions 1-2 are for “normal" households. 
Regression (3) is for households with subsidized energy bills. Regression (4) is for all-electric homes. 

 

The left-hand side variable is our measure of temperature response of electricity consumption 

for each of the bins 10-14, which we estimated for each ZIP code  in the previous step, using 

Equation (1). On the right-hand side, we control for the percent of days spent in the respective 

bins during the years 1981-2000 (our predetermined proxy for summer climate), income, 

population density and bin dummies. These dummies are important because the bins contain 

very different sets of ZIP codes. Not all ZIP codes, for example, experience days in the hottest 

bin. The bin dummies hence control for unobservable difference across bins. We run a pooled 

regression, the results of which are shown in Table (3). Because the dependent variable is an 

estimated coefficient, we use White robust standard errors. Model (1) pools the climate response 

across all bins; it suggests a mildly positive impact of climate on the slope of the response 

function. Model (2) allows for a differential shift in the temperature response function for the 

three highest bins; as expected, the shift is significant and much larger than the pooled estimate. 

Models (3) and (4) run these models for the subsidized households and the all-electric 

households respectively. Both display a similar pattern. 

We use the results from Models (4), (5) and (6) in Table (3) to simulate the impacts of climate 

change on the slope of each ZIP code’s temperature response curve. In the next section, we will 

generate a large number of counterfactual climate futures from 18 General Circulation Models 

(the technical term for climate models) and two different scenarios of emissions. We will use 

these ZIP code-level climate futures to shift each ZIP code’s temperature response curve for bins 

10-14, using the estimates from Table (3). This simulated shift in the temperature response curve 

will allow us to quantify the extensive margin adaptation response. 
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6: Electricity and Natural Gas Consumption 
Simulations 

In this section, we simulate the impacts of climate change on electricity and then natural gas 

consumption under two different emissions scenarios using 18 different climate models from 

the latest round of the IPCC assessments (AR5, CMIP5) in their downscaled form. For 

electricity, we conduct three different simulations. All Simulations hold overall population 

growth and incomes constant. The first set of simulations only simulate electricity consumption 

per household using the first-stage estimates, which do not allow for changes in the extensive 

margin. In a second simulation, we incorporate the extensive margin adjustments from the 

previous section. For each simulation, we can calculate the trajectory of aggregate electricity 

consumption from the residential sector until the year 2099, which is standard in the climate 

change literature. We provide simulated impacts for the periods 2020-2039, 2040-2059, 2060-

2079 and 2080-2099. 

In our simulations, we make one key assumption. For natural gas, we only use the intensive 

margin simulations, because one would not expect households to install more efficient or fewer 

heaters in response to climate change. We would expect existing equipment to be operated less 

frequently. But one would not install a more efficient and costly heater which is going to be 

used less due to climate change. 

6.1 Temperature Simulations 

The simulation for this section uses the climate response parameters estimated in Section 5.1. 

Using these estimates as the basis of our simulation has several strong implications. Using only 

the first stage parameters via Equation (1) implies that the climate responsiveness of 

consumption within climate zones remains constant throughout the century. 

As is standard in this literature, the counterfactual climate is generated by a general circulation 

model (GCM). These numerical simulation models generate predictions of past and future 

climate under different scenarios of atmospheric greenhouse gas (GHG) concentrations. The 

quantitative projections of global climate change conducted under the auspices of the IPCC’s 

fifth assessment report (AR5) and applied in this study are based on the so-called “RCP 4.5” and 

“RCP 8.5” scenarios. The number after the RCP stands for the likely increase in forcing from the 

scenario by end of century relative to preindustrial values, in Watts per square meter. In terms 

more familiar to most economists, RCP 4.5 is expected to result in warming of 1.8 °C, with a 

likely range of 1.1. to 2.6 °C. This is a very optimistic scenario, as attaining a goal of warming 

less than 2 degrees is unlikely. RCP 8.5 is the worst case scenario and is expected to result in 

warming of 3.7 °C, with a likely range of 2.6 to 4.8 °C. 

We simulate consumption for each scenario using the 18 downscaled GCMs from the IPCC’s 

CMIP5 database. The downscaled temperature scenarios were drawn from a statistical 

downscaling exercise based on the Coupled Model Intercomparison Project 5 (Taylor et al. 2012) 

utilizing a modification (Hegewisch and Abatzoglou, 2015) of the Multivariate Adaptive 
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Constructed Analogs (Abatzoglou and Brown, 2012) method with the Livneh (Livneh et al., 

2013) observational dataset as training data. These were provided to us by the MACA project at 

the University of Idaho. We matched the fine scale grids of the downscaled climate data to ZIP 

codes in the same fashion that we matched the PRISM weather grids. We calculated future 

climate by adding the predicted change in monthly temperature for each model, scenario and 

period to our baseline weather data, in order to avoid local biases, as the MACA project does 

not use the same weather data as its training data set.5 

To obtain estimates for a percent increase in electricity consumption for the representative 

household in ZIP code  and period , we use the following relation: 

 

    (3) 

                                                      

5 A detailed description of the climate model output is available at 

http://maca.northwestknowledge.net/.  
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Notes: This figure plots the average per household increase across all 18 GCMs for RCP 8.5 for the last two decades of this 
century over the years 2000-2015. Panel (a) holds the temperature response curve fixed at the values estimated in-sample. 
Panel (b) allows for the empirically guided extensive margin adjustment. 

Figure 5: Intensive and Extensive Margin Adjustment: Projected Percent In-creases in Average 

Household Electricity Consumption 2080-2099 over 2000-2015 for RCP 8.5 

 

To display the spatial variability in intensive margin impacts for the average household across 

ZIP codes, we generate a map of average household-level impacts by ZIP code. Panel (a) in 

Figure (5) plots the predicted impact for the average household by end of century using the 

ensemble average prediction across all 18 GCMs for RCP8.5. What this graph shows is that the 

ZIP codes in the Central Valley and non-coastal Southern California are projected to experience 
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the largest increases in household electricity consumption. This is due to the combination of the 

slope of the temperature response function and projected warming from the GCMs. These 

projections ignore potential extensive margin impacts, which we turn to next.6 

 

                                                      

6 Figure (A4) displays the projected increases in household residential electricity consumption across the 

approxi-mately 1,200 ZIP codes for each of the four projection periods and the 18 GCMs for RCP 8.5. The 

top panel displays this for intensive margin impacts only, while the bottom panel adds the extensive 

margin response. The box plots display tremendous variation across time (the box and whiskers plots for 

each model are shown in increasing temporal order for each model), across models, and within models. It 

is quite clear that median impacts are increasing over time and impacts range from the negative teens to 

increases approaching 50% for some ZIP codes. We trim the distribution of estimated impacts at the top 

and bottom because some point estimates are too large to be credible. This has to do with a lack of 

precision for some zip codes with very few observations in the extreme bins. We censor the slope 

coefficients to be less than 0.2 in absolute value and the projected impacts to be less than 50%. 
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Figure A4: Intensive margin [Top Panel] and Extensive Margin [Bottom Panel] per household 

impacts across ZIP codes and Climate Models. 
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For each ZIP code, climate model and scenario, we calculate the simulated shift of the 

temperature response curve using Model (2) in Table (3). As the temperature distribution shifts 

to the right for the vast majority of ZIP codes in California, a higher share of days in the higher 

bins is projected under both climate change scenarios for most models. We use these extensive 

margin adjusted response functions to simulate impacts of climate change on electricity 

consumption. Panel (b) in Figure (5) displays the impacts on the average household in a ZIP 

code using the ensemble average of GCMs and RCP 8.5 by end of century across the state for 

the extensive margin adaptation. It is important to note that this figure plots the “delta” from 

the intensive margin results. It indicates a noticeable increase in consumption across the state 

relative to the intensive margin only, shown in Panel (a). The right panel shows that these 

extensive margin impacts will be felt most strongly in the Central Valley and non-coastal areas 

of Southern California.7 

 

Table 4: Projected Percent Changes in Residential Electricity Consumption 

 
Notes: This table displays the simulated percent increase in total residential electricity consumption relative to 2000-2015 
climate for the two IPCC Representative Concentration Pathways with low emissions (4.5) and high emissions (8.5). Columns 
(1) and (2), indicate simulated increases for normal households Columns (3) and (4) simulate increases for subsidized 
households. Columns (5) and (6) simulate changes for households which are all-electric. Columns (7) and (8) display the 
impacts on natural gas consumption for households with gas bills. 

 

                                                      

7 The bottom panel in Figure (A4) displays the same box and whisker plots as we did for the intensive 

margin simulations earlier, but now incorporates the extensive margin changes. What stands out from 

this graph is an almost uniform upward shift in the medians across models and increased variability 

across models - especially at the high end. 
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While these maps are instructive, it is hard to determine the size of the overall impact of 

allowing for extensive margin adjustment. Table (4) therefore shows the overall population-

weighted increases in total electricity consumption averaged across the 18 climate models and 

for both RCPs - with and without extensive margin adjustments. The first thing to notice from 

this table is that accounting for the extensive margin adjustments results in a significant 

difference in simulated impacts, which is consistent with the findings in Davis and Gertler 

(2015) for Mexico. For RCP4.5 by the end of the century, accounting for extensive margin 

impacts increases the estimated impacts by 30%. The second noteworthy fact is that the 

estimated impacts for electricity consumption are relatively small even until 2059 - strictly less 

than 5% even for the worst case scenario incorporating extensive margin adjustment. In terms 

of the electricity planners’ time horizon, the magnitude of the impacts falls within the noise. By 

the end of the century, the impacts are larger, yet their magnitudes are small enough that not 

overly optimistic assumptions about technological change related to energy efficiency should 

more than offset these gains. A 14.7% increase in electricity consumption from “normal” 

households - which is the largest effect we find - by end of century is about a 0.2% annual 

growth rate. The results for low-income households are even smaller: a 14% increase for the 

worst case scenario by the end of the century. The results for all–electric homes are much 

smaller. This makes sense because, for these homes, decreased heating will offset increases in air 

conditioning demand. 

For natural gas, however, we see more significant decreases in consumption, even by mid-

century. Under RCP8.5, consumption is expected to decrease by 10.4% by mid-century and by 

end of century by 20.5%. Again, the end of century is a long ways away and beyond the utility 

planners’ horizon, but this raises the question of whether the savings from natural gas are 

bigger than the projected increases in electricity consumption in this counterfactual world. The 

Energy Information Administration (EIA) states that California homes used 0.287 quadrillion 

BTU of electricity and 0.439 quadrillion BTU of natural gas in 2009. If we use the projected 

percentage changes from Table (4), we arrive at the conclusion that climate change is simulated 

to lead to a 0.039 quad BTU net decrease in final energy consumption for the residential sector 

in California. This does of course not account for the generation and transmission losses 

incurred in the electricity sector. We will discuss the limitations of this simulation in the 

conclusions. 

 

7: Conclusions 

In the residential sector, one of the most widely discussed modes of adaptation to higher 

temperatures due to climate change is the increased demand for cooling and decreased demand 

for heating in the built environment. Due to its mild climate and heavy reliance on natural gas, 

California’s residential sector uses relatively little electricity for heating. It is therefore expected 

that the demand for electricity will increase as households operate existing air conditioners 

more frequently, and in many regions will install air conditioners where there currently are few. 
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This paper provides reduced form estimates of changes in electricity consumption due to 

increased use of installed cooling equipment under a hotter climate. The study adds to the 

literature by incorporating the change in temperature responsiveness due to likely increases in 

air conditioner penetration under climate change, using a two-stage method. The advantage of 

the proposed method lies in its relative simplicity and the fact that it only requires data on 

electricity consumption and not on installed cooling equipment. 

We show that accounting for extensive margin adjustments will lead to statistically and 

economically significantly higher projections of electricity consumption. However, by 

estimating the response of natural gas consumption to higher temperatures, we also show that 

the projected increases in final electricity consumption are more than offset by savings in 

directly consumed natural gas. 

It is important to keep in mind several caveats. These are simulations, not forecasts. We think of 

the results provided in this paper as imposing end of century climate on a current day 

economy. Many other drivers of energy consumption will change. What our paper shows is the 

business as usual path, which mitigation strategy has to work against. We do not and cannot 

model changes in electricity consumption due to improvements in the efficiency of heating and 

cooling equipment and/or buildings. These effects will offset some or all of the increases in 

electricity consumption outlined in this paper and will amplify the natural gas savings. Further, 

the extensive margin adjustments in this paper cannot meaningfully control for changes in 

urban form, urban heat island effects, or other variables potentially leading to a higher 

response, which may be correlated with temperature. We leave the study of these effects to 

future work. 
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APPENDIX A: Tables and Figures 

 

Table 1: Electricity and Natual Gas Bills by Utility 

 
Notes: This table displays the total number of bills in our dataset. We drop electricity bills with average daily consumption less 
than 2kWh as well as solar homes. Further, the estimated models only include ZIP codes for which we have more than 1,000 
bills. 

 

 

Table 2: Summary Statistics for ZIP Codes In and Out of Sample 

 
Notes: This table displays the mean observable characteristics of the ZIP codes in our sample and ZIP codes not in our 
sample with positive population. The t-test assumes unequal variances. The observable characteristics were purchased from 
zip-codes.com. 
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Table 3: Second Stage Regressions of Temperature Response Coefficients by Temperature Bin 

 
Notes: This table displays coefficients from a regression of the electricity slope coefficients estimated in equation (1) on the 
share of days in a given temperature bin the ZIP code has experienced over the period 1981-2000. The regression only 
includes the air conditioning relevant temperature bins 10-14. The standard errors are Huber-White. Regressions 1-2 are for 
“normal" households. Regression (3) is for households with subsidized energy bills. Regression (4) is for all-electric homes. 
 

Table 4: Projected Percent Changes in Residential Electricity Consumption 

 
Notes: This table displays the simulated percent increase in total residential electricity consumption relative to 2000-2015 
climate for the two IPCC Representative Concentration Pathways with low emissions (4.5) and high emissions (8.5). Columns 
(1) and (2), indicate simulated increases for normal households Columns (3) and (4) simulate increases for subsidized 
households. Columns (5) and (6) simulate changes for households which are all-electric. Columns (7) and (8) display the 
impacts on natural gas consumption for households with gas bills. 
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Notes: This figure displays the temperature response of electricity consumption in three fictional ZIP codes with differing 
climates - moderate, warm and hot. The bars at the bottom display the temperature (weather) distribution for the three ZIP 
codes. The colors of the response functions match the colors of the weather distribution(s). The figure displays that the hot 
ZIP code has a steeper temperature response at higher temperatures than the warm and moderate ZIP codes. The first step 
in the estimation identifies the ZIP code specific temperature response curves using household level data. The second 
estimation step estimates the effect of climate (average time spent in a portion of the temperature spectrum) on the 
slope of the response curves across ZIP codes for the air conditioning relevant portion of the temperature spectrum. 

Figure 1: Conceptual Identification of Short and Long Run Response 
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Figure 2: California's Summer (June-August) and Winter (December-February) Climate: Average 
Daily Temperature 1981-2015 
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Notes: This figure displays the empirical distribution of the estimated electricity temperature response function across ZIP 
codes in the sample across percentile temperature bins. The lightest grey shading indicates the range of the 5th to 95th 
percentile. Each darker shading represents a 5% increase in the percentile. The solid black line represents the median 
temperature responsiveness. The vertical grey lines indicate the cutoffs of the temperature bins. 
 

Figure 3: Distribution of Estimated Electricity Temperature Response Coefficients across ZIP 
Codes 
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Notes: This figure displays the empirical distribution of the estimated electricity temperature response function across ZIP 
codes in the sample across percentile temperature bins. The lightest grey shading indicates the range of the 5th to 95th 
percentile. Each darker shading represents a 5% increase in the percentile. The solid black line represents the median 
temperature responsiveness. The vertical grey lines indicate the cutoffs of the temperature bins. 

Figure 4: Distribution of Estimated Natural Gas Temperature Response Coefficients across ZIP 
Codes 
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Notes: This figure plots the average per household increase across all 18 GCMs for RCP 8.5 for the last two decades of this 
century over the years 2000-2015. Panel (a) holds the temperature response curve fixed at the values estimated in-sample. 
Panel (b) allows for the empirically guided extensive margin adjustment. 

Figure 5: Intensive and Extensive Margin Adjustment: Projected Percent In-creases in Average 
Household Electricity Consumption 2080-2099 over 2000-2015 for RCP 8.5 
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Notes: The maps above display the five-digit ZIP codes for which we have more than 500 bills over the estimation period 
from either PG&E, SCE, SCG or SDG&E. Zip codes with no data either have fewer than 500 bills total or are served by one of 
California’s many municipal utilities. Panel (a) displays coverage for our electricity data. Panel (b) displays coverage for our 
natural gas data. 

Figure A1: Spatial Data Coverage by Utility for Electricity and Natural Gas 
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Notes: This figure displays the empirical distribution of the estimated electricity temperature response function across ZIP 
codes in the sample across percentile temperature bins. The lightest grey shading indicates the range of the 5th to 95th 
percentile. Each darker shading represents a 5% increase in the percentile. The solid black line represents the median 
temperature responsiveness. The vertical grey lines indicate the cutoffs of the temperature bins. This figure is estimated for 
the subset of households receiving a 20% discount on their utility pricing due to their low income status. 

Figure A2: Distribution of Estimated Electricity Temperature Response Coeffi-cients across ZIP 
Codes for Subsidized Households 
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Notes: This figure displays the empirical distribution of the estimated electricity temperature response function across ZIP 
codes in the sample across percentile temperature bins. The lightest grey shading indicates the range of the 5th to 95th 
percentile. Each darker shading represents a 5% increase in the percentile. The solid black line represents the median 
temperature responsiveness. The vertical grey lines indicate the cutoffs of the temperature bins. This figure is estimated for 
the subset of households identified as all–electric by the utilities. 

Figure A3: Distribution of Estimated Electricity Temperature Response Coefficients across ZIP 
Codes for All-Electric Households 
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Figure A4: Intensive margin [Top Panel] and Extensive Margin [Bottom Panel] per household 
impacts across ZIP codes and Climate Models. 


